Cyngn Expands U.S. Patent Portfolio for its Autonomous Vehicle Technologies with 15th Patent

Oct 03, 2023 7:00 AM

MENLO PARK, Calif., Oct. 3, 2023 /PRNewswire/ -- <u>Cyngn Inc.</u> (the "Company" or "Cyngn") (Nasdaq: CYN), a developer of AI-powered autonomous driving solutions for industrial applications, today announced the issuance of a new patent, US-11760368-B2, for the Company's autonomous vehicle (AV) and driving solutions. This new patent protects Cyngn's novel same-loop adaptive simulation approach that aims to enhance autonomous driving by concurrently using simulated and real-world driving signals to inform the movement of an AV.

"Today's announcement shows our company's commitment to innovation and expands our total number of U.S. patents to 15," said Lior Tal, chief executive officer of Cyngn. "As we further expand our patent portfolio, we are doing so very strategically in order to deliver the best possible product and protect our IP in the process. At present, we have submitted an additional 10 US patents and 20 international patents, which we plan to utilize in the coming years."

Cyngn provides their customers a seamless way to adopt self-driving technology into their operations without high upfront costs or the need to completely replace existing vehicle investments.

This additional patent comes on the heels of the Company's <u>announcement</u> of the procurement of four additional patents for the Company's proprietary technology around vehicle sensors, obstacle detection systems, autonomous driving predictions, and multi-channel object matching and issuance.

Cyngn's patent family is comprised of the following granted patents:

Patent Number	Title	Publication Date
US-11760368-B2	SYSTEM AND METHOD OF SAME-LOOP ADAPTIVE SIMULATION FOR AUTONOMOUS DRIVING	9/19/2023
US-11,747,454	GRANULARITY-FLEXIBLE EXISTENCE-BASED OBJECT DETECTION	9/5/2023

US-11,745,762	SYSTEM AND METHODS OF ADAPTIVE TRAJECTORY PREDICTION FOR AUTONOMOUS DRIVING	9/5/2023
US-11,745,747	SYSTEM AND METHOD OF ADAPTIVE DISTRIBUTION OF AUTONOMOUS DRIVING COMPUTATIONS	9/5/2023
US-11,745,750	SYSTEM AND METHOD OF LARGE-SCALE AUTOMATIC GRADING IN AUTONOMOUS DRIVING USING A DOMAIN-SPECIFIC LANGUAGE	9/5/2023
US-11,679,726	VEHICLE SENSOR SYSTEMS	6/20/2023
US-11,673,577	SYSTEM AND METHODS OF ADAPTIVE RELEVANCY PREDICTION FOR AUTONOMOUS DRIVING	6/13/2023
US-11,668,833	OBSTACLE DETECTION SYSTEMS	6/6/2023
US-11,651,583	MULTI-CHANNEL OBJECT MATCHING	5/16/2023
US-11,614,527	SELF-ADAPTIVE LIDAR-CAMERA SYNCHRONIZATION SYSTEM	3/28/2023
US-11,592,565	FLEXIBLE MULTI-CHANNEL FUSION PERCEPTION	2/28/2023
US-11,555,928	THREE-DIMENSIONAL OBJECT DETECTION WITH GROUND REMOVAL INTELLIGENCE	1/17/2023
US-11,372,115	VEHICLE LOCALIZATION	6/28/2022

US-11,186,234	VEHICLE SENSOR SYSTEMS	11/30/2021
US-11,169,271	OBSTACLE DETECTION SYSTEMS	11/9/2021

For a comprehensive view of Cyngn's patents focused on modularity and flexibility of autonomous vehicle systems with multiple sensor modalities and configurations, please visit the <u>USPTO</u>.

About Cyngn

Cyngn develops and deploys scalable, differentiated autonomous vehicle technology for industrial organizations. Cyngn's self-driving solutions allow existing workforces to increase productivity and efficiency. The Company addresses significant challenges facing industrial organizations today, such as labor shortages, costly safety incidents, and increased consumer demand for eCommerce.

Cyngn's DriveMod Kit can be installed on new industrial vehicles at end of line or via retrofit, empowering customers to seamlessly adopt self-driving technology into their operations without high upfront costs or the need to completely replace existing vehicle investments.

Cyngn's flagship product, its Enterprise Autonomy Suite, includes DriveMod (autonomous vehicle system), Cyngn Insight (customer-facing suite of AV fleet management, teleoperation, and analytics tools), and Cyngn Evolve (internal toolkit that enables Cyngn to leverage data from the field for artificial intelligence, simulation, and modeling).

Find Cyngn on:

Website: https://cyngn.comTwitter: https://cyngn.com

 $\bullet \ \ LinkedIn: \underline{https://www.linkedin.com/company/cyngn}\\$

• YouTube: https://www.youtube.com/@cyngnhq

Cyngn Investor/Media Contact:

Bill Ong Cyngn Inc. bill@cyngn.com 650-204-1551

SOURCE Cyngn

View original content to download multimedia:https://www.prnewswire.com/news-releases/
ngn-expands-us-patent-portfolio-for-its-autonomous-vehicle-technologies-with-15th-
tent-301945323.html